Code: IT1T4

I B. Tech - I Semester - Regular Examinations - January 2015

DISCRETE MATHEMATICS (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks $11 \times 2 = 22 \text{ M}$

- 1. a) Write the truth table for $p \to (p \lor q)$.
 - b) Construct the truth table for NOR function.
 - c) Write the Opposite of $p \rightarrow q$.
 - d) Symbolize the statement "No dogs are intelligent" and "All babies are illogical".
 - e) Define Planar graph.
 - f) Define Chromatic number.
 - g) How many different license plates are there that involve 1, 2 or 3 letters followed by 4 digits.
 - h) How many different outcomes are possible from tossing 10 similar dice?
 - i) Write the generating function for the sequence defined by $a_r = (-1)^r 3^r$
 - j) Solve the recurrence relation $a_n = a_{n-1} + n^2$ where $a_0 = 7$.
 - k) Find the coefficient of X^{10} in $\frac{1}{(1-X)^3}$.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Construct the truth table for

$$\{[(p \lor q) \to r] \land (\neg p)\} \to (q \to r).$$

- b) Find the disjunctive normal form of the compound proposition $\{q \lor (p \land r)\} \land \neg \{(p \lor r) \land q\}$. 8 M
- 3. a) Prove or disprove the validity of the following argument: All men are fallible.

All kings are men.

Therefore, all kings are fallible.

8 M

- b) Prove by Mathematical Induction that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for each positive integer n. 8 M
- 4. a) Find the Transitive closure of 'R' if R={(a,a), (a,b), (b,c), (b,d), (d,c), (d,d)}.
 - b) A complete graph K_n , is planar iff $n \le 4$.

5. a) How many integral solutions are there of

$$x_1 + x_2 + x_3 + x_4 = 20$$

if $1 \le x_1 \le 6$, $1 \le x_2 \le 7$, $1 \le x_3 \le 8$, $1 \le x_4 \le 9$?
8 M

- b) i) How many 5-card hands consists only of hearts?
 - ii) How many 5-card hands consists of cards from a single suit?

8 M

Solve the recurrence relation $a_n - 5a_{n-1} + 6a_{n-2} = n(n-1)$ for $n \ge 2$.